Advancing the biophysical understanding of satellite-detected vegetation seasonality in the tropics
The Science
Satellite observations of Amazon forests show seasonal and inter-annual variation in canopy greenness, but the underlying biological mechanisms leading to a change in greenness have not been resolved. Here a research team from Brookhaven National Laboratory combined canopy radiative transfer models (RTMs) with field observations of Amazon forest leaf and canopy characteristics to test three hypotheses that could explain seasonality in satellite-observed canopy reflectance; (1) changes in the number of leaves per unit ground area (leaf area index), (2) changes in the fraction of the upper canopy that are leafless, and (3) changes in leaf age. They showed that canopy RTMs driven by these three factors closely matched simulated satellite-observed seasonal patterns, explaining ~70% of variability in a key reflectance-based vegetation index. Leaf area index, leafless crown fraction and leaf age accounted for 1%, 33% and 66% of modeled seasonality.
The Impact
The analysis of canopy-scale biophysics rules out satellite artifacts as significant cause of satellite-observed seasonal patterns in greenness at this site and implies that leaf phenology can explain large scale remotely-observed patterns. Thier study reconciles current controversies about satellite-detected canopy greenness, and enables more confident use of satellite observations to study climate-phenology relationships in the tropics.
Summary
The average annual cycle (2000-2014) of MODIS satellite observed canopy greenness (i.e. MAIAC EVI in red circles in panel a, which minimizes the artifacts from clouds/aerosols and sun-sensor geometry) in a Brazilian Amazon evergreen forest, the Tapajos k67 site, shows strong seasonality. This seasonality is primarily driven by canopy NIR reflectance (red circles in panel b). Here, the team combined rich, field measurements of leaf and canopy characteristics with a 3-D radiative transfer model (i.e. Forest Light Environment Simulator, FLiES) to interpret MAIAC EVI seasonality. These results show that the comprehensive FLiES model (in black rectangles; panel a and b) with all phenological input (as “P1+P2+P3” in panel c and d) did a good job at simulating MAIAC EVI and NIR reflectance seasonality. This suggests that biological processes dominate canopy-scale reflectance and greenness seasonality in this tropical forest. Further, the research teamaq did model sensitivity analysis to quantify the relative contribution of each of the three phenological factors (panel c and d), including “P1” driven by seasonal change in canopy leaf area index only, “P2” driven by seasonal change in canopy-surface leafless crown fraction alone (in red), and “P3” driven by seasonal change in canopy leaf age demography (in green). their results suggest that canopy-surface leafless crown fraction and leaf age demography control the seasonality in greenness, they did not observe any direct effect of leaf area index on greenness.
Contacts (BER PM): Daniel Stover, SC-23.1, Daniel.Stover@science.doe.gov (301-903-0289)
PI Contact
Lead author contact information: Jin Wu, Brookhaven National Laboratory, jinwu@bnl.gov
Institutional contact: Alistair Rogers, Brookhaven National Laboratory, arogers@bnl.gov
Funding
SP Serbin, A Rogers, and J Wu in part were supported by the Next-Generation Ecosystem Experiment (NGEE-Tropics) project. The NGEE-Tropics project is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science.
Publications
Wu J, Kobayashi H, Stark SC, Meng R, Guan K, Tran NN, Gao S, Yang W, Restrepo-Coupe N, Miura T, Oliviera RC, Rogers A, Dye DG, Nelson BW, Serbin S, Huete AR, and Saleska SR. (2017) Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. New Phytologist, doi:10.1111/nph.14939.